9 research outputs found

    Caveats for information bottleneck in deterministic scenarios

    Full text link
    Information bottleneck (IB) is a method for extracting information from one random variable XX that is relevant for predicting another random variable YY. To do so, IB identifies an intermediate "bottleneck" variable TT that has low mutual information I(X;T)I(X;T) and high mutual information I(Y;T)I(Y;T). The "IB curve" characterizes the set of bottleneck variables that achieve maximal I(Y;T)I(Y;T) for a given I(X;T)I(X;T), and is typically explored by maximizing the "IB Lagrangian", I(Y;T)βI(X;T)I(Y;T) - \beta I(X;T). In some cases, YY is a deterministic function of XX, including many classification problems in supervised learning where the output class YY is a deterministic function of the input XX. We demonstrate three caveats when using IB in any situation where YY is a deterministic function of XX: (1) the IB curve cannot be recovered by maximizing the IB Lagrangian for different values of β\beta; (2) there are "uninteresting" trivial solutions at all points of the IB curve; and (3) for multi-layer classifiers that achieve low prediction error, different layers cannot exhibit a strict trade-off between compression and prediction, contrary to a recent proposal. We also show that when YY is a small perturbation away from being a deterministic function of XX, these three caveats arise in an approximate way. To address problem (1), we propose a functional that, unlike the IB Lagrangian, can recover the IB curve in all cases. We demonstrate the three caveats on the MNIST dataset

    An evaluation of intrusive instrumental intelligibility metrics

    Full text link
    Instrumental intelligibility metrics are commonly used as an alternative to listening tests. This paper evaluates 12 monaural intrusive intelligibility metrics: SII, HEGP, CSII, HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and sEPSMcorr\text{sEPSM}^\text{corr}. In addition, this paper investigates the ability of intelligibility metrics to generalize to new types of distortions and analyzes why the top performing metrics have high performance. The intelligibility data were obtained from 11 listening tests described in the literature. The stimuli included Dutch, Danish, and English speech that was distorted by additive noise, reverberation, competing talkers, pre-processing enhancement, and post-processing enhancement. SIIB and HASPI had the highest performance achieving a correlation with listening test scores on average of ρ=0.92\rho=0.92 and ρ=0.89\rho=0.89, respectively. The high performance of SIIB may, in part, be the result of SIIBs developers having access to all the intelligibility data considered in the evaluation. The results show that intelligibility metrics tend to perform poorly on data sets that were not used during their development. By modifying the original implementations of SIIB and STOI, the advantage of reducing statistical dependencies between input features is demonstrated. Additionally, the paper presents a new version of SIIB called SIIBGauss\text{SIIB}^\text{Gauss}, which has similar performance to SIIB and HASPI, but takes less time to compute by two orders of magnitude.Comment: Published in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 201

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    Speech Communication from an Information Theoretical Perspective

    No full text
    Throughout the last century, models of human speech communication have been proposed by linguists, psychologists, and engineers. Advancements have been made, but a theory of human speech communication that is both comprehensive and quantitative is yet to emerge. This thesis hypothesises that a branch of mathematics known as information theory holds the answer to a more complete theory. Information theory has made fundamental contributions to wireless communications, computer science, statistical inference, cryptography, thermodynamics, and biology. There is no reason that information theory cannot be applied to human speech communication, but thus far, a relatively small effort has been made to do so. The goal of this research was to develop a quantitative model of speech communication that is consistent with our knowledge of linguistics and that is accurate enough to predict the intelligibility of speech signals. Specifically, this thesis focuses on the following research questions: 1) how does the acoustic information rate of speech compare to the lexical information rate of speech? 2) How can information theory be used to predict the intelligibility of speech-based communication systems? 3) How well do competing models of speech communication predict intelligibility? To answer the first research question, novel approaches for estimating the information rate of speech communication are proposed. Unlike existing approaches, the methods proposed in this thesis rely on having a chorus of speech signals where each signal in the chorus contains the same linguistic message, but is spoken by a different talker. The advantage of this approach is that variability inherent in the production of speech can be accounted for. The approach gives an estimate of about 180 b/s. This is three times larger than estimates based on lexical models, but it is an order of magnitude smaller than previous estimates that rely on acoustic signals. To answer the second research question, a novel instrumental intelligibility metric called speech intelligibility in bits (SIIB) and a variant called SIIBGauss are proposed. SIIB is an estimate of the amount of information shared between a talker and a listener in bits per second. Unlike existing intelligibility metrics that are based on information theory, SIIB accounts for talker variability and statistical dependencies between time-frequency units. Finally, to answer the third research question, a comprehensive evaluation of intrusive intelligibility metrics is provided. The results show that SIIB and SIIBGauss have state-of-the-art performance, that intelligibility metrics tend to perform poorly on data sets that were not used during their development, and show the advantage of reducing statistical dependencies between input features

    An intelligibility metric based on a simple model of speech communication

    No full text
    Instrumental measures of speech intelligibility typically produce an index between 0 and 1 that is monotonically related to listening test scores. As such, these measures are dimensionless and do not represent physical quantities. In this paper, we propose a new instrumental intelligibility metric that describes speech intelligibility using bits per second. The proposed metric builds upon an existing intelligibility metric that was motivated by information theory. Our main contribution is that we use a statistical model of speech communication that accounts for noise inherent in the speech production process. Experiments show that the proposed metric performs at least as well as existing state-of-the-art intelligibility metrics.(Best student paper award)Circuits and System

    An Evaluation of Intrusive Instrumental Intelligibility Metrics

    No full text
    Instrumental intelligibility metrics are commonly used as an alternative to listening tests. This paper evaluates 12 monaural intrusive intelligibility metrics: SII, HEGP, CSII, HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and sEPSMcorr. In addition, this paper investigates the ability of intelligibility metrics to generalize to new types of distortions and analyzes why the top performing metrics have high performance. The intelligibility data were obtained from 11 listening tests described in the literature. The stimuli included Dutch, Danish, and English speech that was distorted by additive noise, reverberation, competing talkers, preprocessing enhancement, and postprocessing enhancement. SIIB and HASPI had the highest performance achieving a correlation with listening test scores on average of ρ =0.92 and ρ =0.89, respectively. The high performance of SIIB may, in part, be the result of SIIBs developers having access to all the intelligibility data considered in the evaluation. The results show that intelligibility metrics tend to perform poorly on datasets that were not used during their development. By modifying the original implementations of SIIB and STOI, the advantage of reducing statistical dependencies between input features is demonstrated. Additionally, this paper presents a new version of SIIB called SIIBGauss, which has similar performance to SIIB and HASPI, but takes less time to compute by two orders of magnitude.Accepted author manuscriptCircuits and System

    The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    No full text
    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis
    corecore